Efficient resource allocation in mobile-edge computation offloading: Completion time minimization

2017 
Mobile-edge computation offloading (MECO) is a promising solution for enhancing the capabilities of mobile devices. For an optimal usage of the offloading, a joint consideration of radio resources and computation resources is important, especially in multiuser scenarios where the resources must be shared between multiple users. We consider a multi-user MECO system with a base station equipped with a single cloudlet server. Each user can offload its entire task or part of its task. We consider parallel sharing of the cloudlet, where each user is allocated a certain fraction of the total computation power. The objective is to minimize the completion time of users' tasks. Two different access schemes for the radio channel are considered: Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA). For each access scheme, we formulate the corresponding joint optimization problem and propose efficient algorithms to solve it. Both algorithms use the bisection-search method, where each step requires solving a feasibility problem. For TDMA, the feasibility problem has a closed-form solution. Numerical results show that the performance of offloading is higher than of local computing. In particular, MECO with FDMA outperforms MECO with TDMA, but with a small margin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    55
    Citations
    NaN
    KQI
    []