Maternal drug abuse and human term placental xenobiotic and steroid metabolizing enzymes in vitro.

2000 
We evaluated the impact of maternal drug abuse at term on human placental cytochrome P450 (CYP)-mediated (Phase I) xenobiotic and steroid-metabolizing activities [aromatase, 7-ethoxyresorufin O-deethylase (EROD), 7-ethoxycoumarin O-deethylase (ECOD), pyrene 1-hydroxylase (P1OH), and testosterone hydroxylase], and androstenedione-forming isomerase, NADPH quinone oxidoreductase (Phase II), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST) activities in vitro. Overall, the formation of androstenedione, P1OH, and testosterone hydroxylase was statistically significant between control and drug-abusing subjects; we observed no significant differences in any other of the phase I and II activities. In placentas from drug-abusing mothers, we found significant correlations between ECOD and P1OH activities (p < 0. 001), but not between ECOD and aromatase or P1OH and EROD activities; we also found significant correlations between blood cotinine and UGT activities (p < 0.01). In contrast, in controls (mothers who did not abuse drugs but did smoke cigarettes), the P1OH activity correlated with ECOD, EROD (p < 0.001), and testosterone hydroxylase (p < 0.001) activities. Our results (wider variation in ECOD activity among tissue from drug-abusing mothers and the significant correlation between P1OH and ECOD activities, but not with aromatase or EROD activities) indicate that maternal drug abuse results in an additive effect in enhancing placental xenobiotic metabolizing enzymes when the mother also smokes cigarettes; this may be due to enhancing a "silent" CYP form, or a new placental CYP form may be activated. The change in the steroid metabolism profile in vitro suggests that maternal drug abuse may alter normal hormonal homeostasis during pregnancy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    26
    Citations
    NaN
    KQI
    []