Ultrasound‑targeted microbubble destruction‑mediated miR‑767 inhibition suppresses tumor progression of non‑small cell lung cancer

2020 
MicroRNAs (miRNAs/miRs) have important roles in tumor progression in various human cancers. Ultrasound-targeted microbubble destruction (UTMD)-mediated gene transfection has been considered a useful tool for improving cancer treatment. The present study aimed to investigate the role of miR-767 in non-small cell lung cancer (NSCLC) and further analyze the effects of UTMD-mediated miR-767 inhibition on tumor progression. The expression of miR-767 was measured by reverse transcription-quantitative PCR. UTMD-mediated miR-767 inhibition was achieved by the co-transfection of microbubbles and miR-767 inhibitor in NSCLC cells. Cell proliferation was assessed by a CCK-8 assay and cell migration and invasion were examined by a Transwell assay. The expression of miR-767 was increased in NSCLC serum, tissues and cells compared with controls. The reduction of miR-767 in NSCLC cells led to the inhibition of cell proliferation, migration and invasion. UTMD increased the transfection efficiency of the miR-767 inhibitor in NSCLC cells, and UTMD-mediated miR-767 inhibition resulted in a more significant suppressive effect on tumor cell proliferation, migration and invasion. Taken together, the results indicated that miR-767 expression is upregulated in both NSCLC clinical samples and cells. The downregulation of miR-767 can inhibit tumor cell proliferation, migration and invasion, and these effects are further promoted by UTMD-mediated miR-767 inhibition, which indicated the potential of a UTMD-mediated miR-767 inhibition as a novel therapeutic strategy for NSCLC treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    4
    Citations
    NaN
    KQI
    []