Model-driven neuromodulation of the right posterior region promotes encoding of long-term memories

2020 
Abstract Background Long-term recognition memory depends both on initial encoding and on subsequent recognition processes. Objective In this study we aimed at improving long-term memory by modulating posterior parietal brain activity during the encoding process. If this area is causally involved in memory encoding, its facilitation should lead to behavioral improvement. Based on the dual-process memory framework, we also expected that the neuromodulation would dissociate subsequent familiarity-based and recollection-based recognition. Methods We investigated the role of the posterior parietal brain oscillations in facial memory formation in three separate experiments using electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and model-driven, multi-electrode transcranial alternating current stimulation (tACS). Results Using fMRI and EEG, we confirmed that the right posterior parietal cortex is an essential node that promotes the encoding of long-term memories. We found that single-trial low theta power in this region predicts subsequent long-term recognition. On this basis, we fine-tuned the spatial and frequency settings of tACS during memory encoding. Model-driven tACS over the right posterior brain area augmented subsequent long-term recognition memory and particularly the familiarity of the observed stimuli. The recollection process, and short-term task performance as control remained unchanged. Control stimulation over the left hemisphere had no behavioral effect. Conclusion We conclude that the right posterior brain area is crucial in long-term memory encoding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    8
    Citations
    NaN
    KQI
    []