Computer-based automated analysis of X-ray and thermal imaging of knee region in evaluation of rheumatoid arthritis:
2017
The aim and objectives of the study are as follows: (1) to perform automated segmentation of knee X-ray images using fast greedy snake algorithm and feature extraction using gray level co-occurrence matrix method, (2) to implement automated segmentation of knee thermal image using RGB segmentation method and (3) to compare the features extracted from the segmented knee region of X-ray and thermal images in rheumatoid arthritis patients using a biochemical method as standard. In all, 30 rheumatoid arthritis patients and 30 age- and sex-matched healthy volunteers were included in the study. X-ray and thermography images of knee regions were acquired, and biochemical tests were carried out subsequently. The X-ray images were segmented using fast greedy snake algorithm, and feature extractions were performed using gray level co-occurrence matrix method. The thermal image was segmented using RGB-based segmentation method and statistical features were extracted. Statistical features extracted after segmentation...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
23
References
7
Citations
NaN
KQI