Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light

2018 
Abstract To realize the sustainable employment of solar energy in contaminant degradation and environmental recovery, design and development of an efficient photocatalyst is urgently needed. Herein, a novel direct Z-scheme composite photocatalysts consist of phosphorous-doped ultrathin g-C 3 N 4 nanosheets (PCNS) and bismuth vanadate (BiVO 4 ) are developed via a one-pot impregnated precipitation method. The as-prepared hybrid nanocomposite was utilized for the degradation tetracycline (TC) under visible light irradiation. Among the composites with various PCNS/BiVO 4 ratios, the prepared PCNS/BVO-400 photocatalyst presents the best performance, showing a TC (10 mg/L) removal efficiency of 96.95% within 60 min, more than double that of pristine BiVO 4 (41.45%) and higher than that of pure PCNS (71.78%) under the same conditions. The effects of initial TC concentration, catalyst dosage, pH value and different water sources have been studied in detail. The improved photocatalytic performance of the as-prepared PCNS/BiVO 4 nanocomposites could be attributed to the promoted separation efficiency of the photogenerated electrons and the enhanced charge carrier lifetime (1.65 ns) owing to the synergistic effect between the PCNS and BiVO 4 . The degradation intermediates and decomposition pathway of TC were also analyzed and proposed. Additionally, radical trapping experiments and ESR measurement indicated that the photogenerated holes (h + ), superoxide radical ( O 2 − ) and hydroxyl radical ( OH) all participated in the TC removal procedure in the reaction system. The high performance of PCNS/BVO-400 in real wastewater indicated the potential of the prepared composite in practical application. This work provides an efficient and promising approach for the formation of high performance Z-scheme photocatalyst and study the possibility for real wastewater treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    90
    Citations
    NaN
    KQI
    []