Metal–Single-Molecule–SemiconductorJunctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes

2019 
Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal–single-molecule–semiconductor junctions between silicon and gold source and drain, electrodes. Au–C and Si–C molecule–electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30–400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current–voltage properties during the lif...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    29
    Citations
    NaN
    KQI
    []