Optimizing Ammonia Separation via Reactive Absorption for Sustainable Ammonia Synthesis
2020
Metal halide salts such as magnesium chloride have been demonstrated to be promising candidates for ammonia storage materials for energy storage and agriculture applications due to their ability to incorporate several moles of ammonia per mole of salt. Ammonia exiting a synthesis reactor can be separated from nitrogen and hydrogen by absorption into magnesium chloride. Such an absorption can be more complete and hotter than separation via ammonia condensation, the current standard in the Haber-Bosch process. Here, we discuss the optimal conditions for the cyclic uptake and release of ammonia from the supported magnesium chloride absorbents. An automated system was designed for measuring the non-equilibrium working capacity of the absorbent, as well as the impact of important operating conditions such as absorption and desorption temperature, pressure, and desorption time. Measurements of absorption and desorption kinetics provide insight into the mechanisms involved. The temperatures and pressures during ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
29
References
5
Citations
NaN
KQI