Dropout-Enabled Ensemble Learning for Multi-scale Biomedical Data

2018 
Leveraging information from multiple scales is crucial to understanding complex diseases such as cancer where this could have a significant impact in improving diagnoses, patient management and treatment decisions. Recent advances in Convolutional Neural Networks (CNNs) have enabled major breakthroughs in biomedical image analysis, in particular for histopathology and radiology images. Our main contribution is a methodology to combine independent CNN models built for these two types of images in order to improve diagnostic accuracy. We train separate CNN models and combine them using a Dropout-Enabled meta-classifier. Our framework achieved second place in the MICCAI 2018 Computational Precision Medicine Challenge.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []