Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9

2020 
Autophagy is a cellular degradation pathway essential for neuronal health and function. Autophagosome biogenesis occurs at synapses, is locally regulated and increases in response to neuronal activity. The mechanisms that couple autophagosome biogenesis to synaptic activity remain unknown. In this study we determine that trafficking of ATG-9, the only transmembrane protein in the core autophagy pathway, links the synaptic vesicle cycle with autophagy. ATG-9 positive vesicles in C. elegans are generated from the trans-Golgi network via AP3-dependent budding, and delivered to presynaptic sites. At presynaptic sites, ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt endocytosis, including one associated with Parkinson9s disease, result in abnormal ATG-9 accumulation at clathrin-rich synaptic foci and defects in activity-dependent presynaptic autophagy. Our findings uncover regulated key steps of ATG-9 trafficking at presynaptic sites, and provide evidence that ATG-9 exo-endocytosis couples autophagosome biogenesis at presynaptic sites with the activity-dependent synaptic vesicle cycle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    114
    References
    1
    Citations
    NaN
    KQI
    []