MUSCO: Multi-Stage Compression of neural networks.

2019 
The low-rank tensor approximation is very promising for the compression of deep neural networks. We propose a new simple and efficient iterative approach, which alternates low-rank factorization with a smart rank selection and fine-tuning. We demonstrate the efficiency of our method comparing to non-iterative ones. Our approach improves the compression rate while maintaining the accuracy for a variety of tasks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    5
    Citations
    NaN
    KQI
    []