Numerical investigation of a feed-forwardlinewidth reduction scheme using a mode-lockedlaser model of reduced complexity
2018
We provide numerical verification of a feed-forward, heterodyne-based phase noise reduction scheme using
single-sideband modulation that obviates the need for optical filtering at the output. The main benefit of a
feed-forward heterodyne linewidth reduction scheme is the simultaneous reduction of the linewidth of all modes
of a mode-locked laser (MLL) to that of a narrow-linewidth single-wavelength laser. At the heart of our simulator
is an MLL model of reduced complexity. Importantly, the main issue being treated is the jitter of MLLs and we
show how to create numerical waveforms that mimic the random-walk nature of timing jitter of pulses from
MLLs. Thus, the model does not need to solve stochastic differential equations that describe the MLL dynamics,
and the model calculates self-consistently the line-broadening of the modes of the MLL and shows good agreement with both the optical linewidth and jitter. The linewidth broadening of the MLL modes are calculated after
the phase noise reduction scheme and we confirm that the phase noise contribution from the timing jitter still
remains. Finally, we use the MLL model and phase noise reduction simulator within an optical communications
system simulator and show that the phase noise reduction technique could enable MLLs as optical carriers for
higher-order modulation formats, such as 16-state and 64-state quadrature amplitude modulation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI