Monolithic integration of MoS 2 -based visible detectors and GaN-based UV detectors

2019 
With the increasing demand for high integration and multi-color photodetection for both military and civilian applications, the research of multi-wavelength detectors has become a new research hotspot. However, current research has been mainly in visible dual- or multi-wavelength detectors, while integration of both visible light and ultraviolet (UV) dual-wavelength detectors has rarely been studied. In this work, large-scale and high-quality monolayer MoS2 was grown by the chemical vapor deposition method on transparent free-standing GaN substrate. Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors was demonstrated using common semiconductor fabrication technologies such as photolithography, argon plasma etching, and metal deposition. High performance of a 280 nm and 405 nm dual-wavelength photodetector was realized. The responsivity of the UV detector reached 172.12 A/W, while that of the visible detector reached 17.5 A/W. Meanwhile, both photodetectors achieved high photocurrent gain, high external quantum efficiency, high normalized detection rate, and low noise equivalent power. Our study extends the future application of dual-wavelength detectors for image sensing and optical communication.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    21
    Citations
    NaN
    KQI
    []