Real-Time Attitude Estimation for High-Speed UAV in High-Frequency Environmental Dithering Based on AMCF

2020 
Attitude Measurement System (AMS) that comprised of the low-cost Micro-Electro-Mechanical System (MEMS) based Inertial Measurement Unit (IMU) is usually used as the backup equipment for high-speed Unmanned Aerial Vehicle (UAV) in high-frequency environmental dithering condition. However, both the large-amplitude acceleration during UAV high-speed taxiing and the high-frequency environmental dithering caused by the propeller are important reasons decreasing the real-time attitude measurement precision of the UAV. Furthermore, there is no any other aiding sensors could be used to correct the measurement errors except for the gyroscopes and accelerometers in MEMS IMU. In this paper, an Adaptive Mahony Complementary Filter (AMCF) is used to estimate the real-time attitude of oil-powered single-propeller industrial-grade UAV with low-cost MEMS AMS. Meanwhile, the AMCF based on interference acceleration compensation is proposed to compensate the external disturbance acceleration and the dynamic tuning PI parameters of AMCF. Moreover, the attitude angle is updated by the quaternion updating algorithm to improve the real-time performance and reliability of the AMS. Finally, the UAV high-speed taxiing and flight experiments are included to verify the practical measurement accuracy of low-cost MEMS AMS when it compared with the high-precision and expensive reference system. The flying experimental results demonstrated that the statistical RMS errors of AMS by low-cost MEMS IMU do not exceed 0.882° in pitch and 0.864° in roll when installed in the aviation UAV with high-speed and high-frequency dithering environments. These results not only provide powerful supports for UAV developers but also provide useful method for low-cost MEMS AMS developing and application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []