Light-Effect Transistor (LET) with Multiple Independent Gating Controls for Optical Logic Gates and Optical Amplification

2016 
Modern electronics are developing electronic-optical integrated circuits, while their electronic backbone, e.g. field-effect transistors (FETs), remains the same. However, further FET down scaling is facing physical and technical challenges. A light-effect transistor (LET) offers electronic-optical hybridization at the component level, which can continue Moore’s law to quantum region without requiring a FET’s fabrication complexity, e.g. physical gate and doping, by employing optical gating and photoconductivity. Multiple independent gates are therefore readily realized to achieve unique functionalities without increasing chip space. Here we report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs show output and transfer characteristics resembling advanced FETs, e.g. on/off ratios up to ~1.0x106 with a source-drain voltage of ~1.43 V, gate-power of ~260 nW, and subthreshold swing of ~0.3 nW/decade (excluding losses). Our work offers new electronic-optical integration strategies and electronic and optical computing approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []