A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP

2015 
A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at sub-mm wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply conned and furthermore the trapped grains should follow a distribution that is markedly dierent from the gas. However, gas tracers such as CO and the infrared emission from small grains are both very optically thick where the submm continuum originates, so observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core-accretion. Here we report multifrequency observations of HD 142527, from 34 GHz to 700 GHz, that reveal a compact concentration of cm-sized grains, with a few Earth masses, embedded in a large-scale crescent of mm-sized particles. The emission peaks at wavelengths shorter than 1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is ecient for approximately cm-sized grains and leads to enhanced concentrations, while the smaller grains largely reect the gas distribution. Subject headings: Protoplanetary disks | Planet-disk interactions | Stars: individual: (HD 142527)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    67
    Citations
    NaN
    KQI
    []