Adsorption of Proteins on Colloidal Lignin Particles for Advanced Biomaterials

2017 
Coating of colloidal lignin particles (CLPs), or lignin nanoparticles (LNPs), with proteins was evaluated in order to establish a safe, self-assembly mediated modification technique to tune their surface chemistry. Gelatin and poly- l-lysine formed the most pronounced protein corona on the CLP surface, as determined by dynamic light scattering (DLS) and zeta potential measurements. Spherical morphology of individual protein coated CLPs was confirmed by transmission electron (TEM) and atomic force (AFM) microscopy. A mechanistic adsorption study with several random coiled and globular model proteins was carried out using quartz crystal microbalance with dissipation monitoring (QCM-D). The three-dimensional (3D) protein fold structure and certain amino acid interactions were decisive for the protein adsorption on the lignin surface. The main driving forces for protein adsorption were electrostatic, hydrophobic, and van der Waals interactions, and hydrogen bonding. The relative contributions of these interac...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    48
    Citations
    NaN
    KQI
    []