Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light

2017 
Abstract Visible light-activated C, N, S-tri-doped mesoporous anatase-brookite heterojunction TiO 2 photocatalyst has been synthesized by a facile hydrothermal method. The XRD and Raman spectra data revealed the formation of mixed anatase and brookite phases. The FE-SEM and TEM images demonstrated the formation of brookite phase with a rod-like structure composed of much smaller particles of anatase phase. N 2 isotherm measurements exhibited that both doped and undoped TiO 2 have mesoporous structure and their surface area measurements were reduced from 62 to 30 cm 2  g −1 after non-metals doping. The photocatalytic oxidation of the ibuprofen (IBF) has been evaluated using prepared photocatalysts under visible light. The photocatalytic activity of the mesoporous C, N and S co-doped TiO 2 photocatalyst dramatically increased, achieving complete IBF degradation with an initial 1st order rate 1.779 μM min −1 for 5 h. The photonic efficiency (ξ) of IBF degradation under visible light with ABH (un-doped) and DABH (doped) photocatalysts are 0.044% and 1.84%, respectively. The reaction rate of doped photocatalyst is greater 40 times than non-doped one. The results demonstrated the advantages of the synthetic approach and the great potential of the driven visible light C, N and S co-doped TiO 2 photocatalysts for the treatment of residual pharmaceuticals in contaminated water under visible light.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    46
    Citations
    NaN
    KQI
    []