2,5-Diketopiperazines: A New Class of Poly(ADP-ribose)polymerase Inhibitors

2018 
We show for the first time that natural 2,5-diketopiperazines (cyclic dipeptides) can suppress the activity of the important anticancer target poly(ADP-ribose)polymerase (PARP). Cyclo(L-Ala-L-Ala) and cyclo(L-Ala-D-Ala) can interact with the key residues of the PARP-1 active site, as demonstrated using docking and molecular dynamics simulations. One of the amide groups of cyclo(L-Ala-L-Ala) and cyclo(L-Ala-D-Ala) forms hydrogen bonds with the Gly863 residue, while the second amide group can form a hydrogen bond with the catalytic residue Glu988, and the side chain can make a hydrophobic contact with Ala898. Newly identified diketopiperazine inhibitors are promising basic structures for the design of more effective inhibitors of PARP family enzymes. The piperazine core with two chiral centers provides many opportunities for structural optimization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    10
    Citations
    NaN
    KQI
    []