3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering

2018 
Heart failure is a disease of epidemic proportion and a leading cause of mortality in the world. Because cardiac myocytes are terminally differentiated cells with minimal intrinsic ability to self-regenerate, cardiac tissue engineering has emerged as one of the most realistic therapeutic strategies for cardiac repair. We have previously proven the ability of carbon nanotube scaffolds to promote cardiomyocyte proliferation, maturation, and long-term survival. Here, we tested if three-dimensional scaffolds of carbon nanotube-based composites can also promote cardiomyocyte growth, electrophysiological maturation, and formation of functional syncytia. To this purpose, we developed an elastomeric scaffold that consists of a microporous and self-standing material made of polydimethylsiloxane (PDMS) containing micrometric cavities, and integrated multiwall carbon nanotubes (MWCNTs) into the scaffold. We combined microscopy, cell biology, and calcium imaging to investigate whether neonatal rat ventricular myocyte...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    30
    Citations
    NaN
    KQI
    []