Multi-Sensor Multi-object Tracking with the Generalized Labeled Multi-Bernoulli Filter

2017 
This paper proposes an efficient implementation of the multi-sensor generalized labeled multi-Bernoulli (GLMB) filter. The solution exploits the GLMB joint prediction and update together with a new technique for truncating the GLMB filtering density based on Gibbs sampling. The resulting algorithm has quadratic complexity in the number of hypothesized object and linear in the number of measurements of each individual sensors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    2
    Citations
    NaN
    KQI
    []