Optimizing milled titanium alloy concave surface quality with micro-textured ball-end milling cutters

2021 
The cutting speed at the lowest point of a ball-end milling cutter is zero, which results in poor workpiece surface quality and serious cutter wear. To alleviate this problem, a micro-texture can be processed on the rake face of a ball-end milling cutter to provide an anti-friction and anti-wear mechanism. The objective of the work reported here is to reduce cutter wear and optimise workpiece surface quality. By using a mathematical model of row spacing to analyse the differential geometric relationship between cutters and surfaces at their contact point, we have been able to obtain optimal cutter orientation. This was verified by simulating concave surface machining. Experiments were then conducted to verify the approach and the results showed that when the cutter orientation is adjusted to its optimum, the surface quality of the workpiece processed by a micro-textured ball-end milling cutter is at its best. [Submitted 10 May 2018; Accepted 28 July 2019]
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []