Phenylephrine-Induced Cardiomyocyte Injury Is Triggered by Superoxide Generation through Uncoupled Endothelial Nitric-Oxide Synthase and Ameliorated by 3-[2-[4-(3-Chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxyindazole (DY-9836), a Novel Calmodulin Antagonist

2009 
The pathophysiological relevance of endothelial nitric-oxide synthase (eNOS)-induced superoxide production in cardiomyocyte injury after prolonged phenylephrine (PE) exposure remains unclear. The aims of this study were to define the mechanism of \(\mathrm{O}_{2}^{\overline{.}}\) production by uncoupled eNOS and evaluate the therapeutic potential of a novel calmodulin antagonist 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxyindazole (DY-9836) to rescue hypertrophied cardiomyocytes from PE-induced injury. In cultured rat cardiomyocytes, prolonged exposure for 96 h to PE led to translocation from membrane to cytosol of eNOS and breakdown of caveolin-3 and dystrophin. When NO and \(\mathrm{O}_{2}^{\overline{.}}\) production were monitored in PE-treated cells by 4-amino-5-methylamino-2′,7′-difluorofluorescein and dihydroethidium, respectively, Ca 2+ -induced NO production elevated by 5.7-fold ( p p p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    20
    Citations
    NaN
    KQI
    []