High-temperature giant magnetoimpedance in Fe-based nanocrystalline alloy

2000 
Giant magnetoimpedance (GMI) was investigated from room temperature up to 823 K in an Fe-based nanocrystalline Fe73.0Cu1.0Nb2.5V1.0Si13.5B9.0 ribbon. With an increment of the measuring temperature (T), GMI shows notable enhancement followed by a declining dependence, yielding a maximum value around 603 K where the relative GMI is nearly four times that at room temperature. The field at the peak of the GMI vs Hdc curve decreases monotonically with T, but around T=603 K there superimposes a trough-shaped variation. The thermal evolution of the soft magnetic property and magnetic anisotropy is suggested to be responsible for the high-temperature GMI features. Discussion on the intergrain exchange magnetic coupling through the amorphous boundaries in the two-phase Fe-based nanocrystalline alloy is also given.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    33
    Citations
    NaN
    KQI
    []