Computational Simulation of Nanoparticle Distributions in Metal Matrix Composite Casting Processes
2021
Lightweight metal matrix nanocomposites (MMnC) could offer distinct advanced properties to light metals due to inherent high temperature stability, high strength, high stiffness, and wear resistance. Production processes have to consider that the movement of particles in the nanoscale range differs from that in the micro and mesoscale range. Nanoparticles show a slight aggregation behaviour in the casting process compared to larger particles. Here a Lagrangian framework was developed to calculate the conservation equation of momentum for nanoparticle taking into account surface and body forces that act on the particle. Thermophoretic and Brownian forces which play a dominant role in the motion of nanoparticles were implemented to analyse the distribution of nanoparticles in low pressure die casting simulations. Strategies to simulate nanoparticle tracking in low pressure die casting were proposed. Verifications were carried out to investigate the motion behaviour using benchmark simulations. The developed model was employed to conduct low pressure die casting simulation and the computational simulation of nanoparticle distributions could be utilized to compare to experimental results from low pressure die casting processes determined by transmission electron microscopy.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
23
References
0
Citations
NaN
KQI