Phase field theory of crystal nucleation in hard sphere liquid

2003 
The phase field theory of crystal nucleation described in L. Granasy, T. Borzsonyi, and T. Pusztai, Phys. Rev. Lett. 88, 206105 (2002) is applied for nucleation in hard-sphere liquids. The exact thermodynamics from molecular dynamics is used. The interface thickness for phase field is evaluated from the cross-interfacial variation of the height of the singlet density peaks. The model parameters are fixed in equilibrium so that the free energy and thickness of the (111), (110), and (100) interfaces from molecular dynamics are recovered. The density profiles predicted without adjustable parameters are in a good agreement with the filtered densities from the simulations. Assuming spherical symmetry, we evaluate the height of the nucleation barrier and the Tolman length without adjustable parameters. The barrier heights calculated with the properties of the (111) and (110) interfaces envelope the Monte Carlo results, while those obtained with the average interface properties fall very close to the exact value...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    34
    Citations
    NaN
    KQI
    []