Transactions Papers Construction of Non-Binary Quasi-Cyclic LDPC Codes by Arrays and Array Dispersions

2009 
This paper presents two algebraic methods for constructing high performance and efficiently encodable non- binary quasi-cyclic LDPC codes based on arrays of special circulant permutation matrices and multi-fold array dispersions. Codes constructed based on these methods perform well over the AWGN and other types of channels with iterative decoding based on belief-propagation. Experimental results show that over the AWGN channel, these non-binary quasi-cyclic LDPC codes significantly outperform Reed-Solomon codes of the same lengths and rates decoded with either algebraic hard-decision Berlekamp-Massey algorithm or algebraic soft-decision Kotter- Vardy algorithm. Also presented in this paper is a class of asymptotically optimal LDPC codes for correcting bursts of erasures. Codes constructed also perform well over flat fading channels. Non-binary quasi-cyclic LDPC codes have a great potential to replace Reed-Solomon codes in some applications in communication environments and storage systems for combating mixed types of noises and interferences.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []