Alterations in cytosine methylation and species-specific transcription induced by interspecific hybridization between Oryza sativa and O. officinalis

2008 
Interspecific hybridization and polyploidization may involve programmed genetic and epigenetic changes. In this study, we used the methylation-sensitive amplified polymorphism (MSAP) method to survey cytosine methylation alterations that occurred in F1 hybrid and BC1 progeny following interspecific hybridization between Oryza sativa and O. officinalis. Across all 316 parental methylated sites, 25 (7.9%) cytosine methylation alterations were detected in the F1 and/or BC1 progeny. Thirty additional cytosine methylation alterations were detected at parental non-methylated or novel sites. In total, 55 cytosine methylation alterations (90.9% of all alterations) were detected in the F1 hybrid, which were maintained in the BC1 progeny. The alterations in cytosine methylation were biased toward the O. officinalis parent and were in some cases repeatable in independent hybridizations between O. sativa and O. officinalis. Twelve fragments showing cytosine methylation alterations were isolated, sequenced and subsequently validated by methylation-sensitive Southern blot analysis. Where possible, we designed species-specific primers to amplify the polymorphic transcripts from either the O. sativa or the O. officinalis parent using reverse transcription (RT)-PCR in combination with single-strand conformation polymorphism (SSCP) analysis. In four of five cases, modified gene expression could be correlated with the altered cytosine methylation pattern. Our results demonstrated cytosine methylation alterations induced by interspecific hybridization between a rice cultivar and its wild relative, and indicated a direct relationship between cytosine methylation alteration and gene expression variation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    19
    Citations
    NaN
    KQI
    []