Progress in Developing Novel Double-Shell Metal Targets Via Magnetron Sputtering

2018 
AbstractDouble-shell inertial confinement fusion targets represent a unique platform for achieving ignition. They consist of a low-Z outer ablator, a high-Z inner pusher layer, and a low-density foam layer sandwiched in between. There is the possibility that double-shell targets may achieve ignition at lower ion temperatures due to the containment of radiation and conduction losses as well as requiring smaller convergence ratios. We have explored using magnetron sputtering to make the inner high-Z pusher layers and have demonstrated a W-Cr bilayer inner-shell design. An Al-Be mixture was explored as one of the outer ablator materials. This material takes advantage of Al X-ray M-band absorption to reduce preheating and still retain Be high-ablation speeds. Typical commercial Al-Be materials suffer from phase separation. However, by using magnetron sputtering we have been able to demonstrate homogeneous Al-Be ablator coatings. The sputtered material forms with nanosized grains and has demonstrated excellent...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    4
    Citations
    NaN
    KQI
    []