A digital feedback controller for stabilizing large electric currents to the ppm level for Feshbach resonance studies.

2020 
Magnetic Feshbach resonances are a key tool in the field of ultracold quantum gases, but their full exploitation requires the generation of large, stable magnetic fields up to 1000 G with fractional stabilities of better than 10−4. Design considerations for electromagnets producing these fields, such as optical access and fast dynamical response, mean that electric currents in excess of 100 A are often needed to obtain the requisite field strengths. We describe a simple digital proportional-integral-derivative current controller constructed using a field-programmable gate array and off-the-shelf evaluation boards that allows for gain scheduling, enabling optimal control of current sources with non-linear actuators. Our controller can stabilize an electric current of 337.5 A to the level of 7.5 × 10−7 in an averaging time of 10 min and with a control bandwidth of 2 kHz.Magnetic Feshbach resonances are a key tool in the field of ultracold quantum gases, but their full exploitation requires the generation of large, stable magnetic fields up to 1000 G with fractional stabilities of better than 10−4. Design considerations for electromagnets producing these fields, such as optical access and fast dynamical response, mean that electric currents in excess of 100 A are often needed to obtain the requisite field strengths. We describe a simple digital proportional-integral-derivative current controller constructed using a field-programmable gate array and off-the-shelf evaluation boards that allows for gain scheduling, enabling optimal control of current sources with non-linear actuators. Our controller can stabilize an electric current of 337.5 A to the level of 7.5 × 10−7 in an averaging time of 10 min and with a control bandwidth of 2 kHz.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    7
    Citations
    NaN
    KQI
    []