miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/β-catenin axis.

2021 
Emerging evidence proves that exosomes contain specific microRNAs(miRNAs) contribute to osteogenic differentiation of bone marrow stem cells (BMSCs). However, the role and mechanism of bone marrow stem cells (BMSCs)-derived exosomes overexpressing miR-424-5p in osteoblasts remains unclear. Firstly, the BMSCs-derived exosomes were isolated, and identified by Western blot with the exosome surface markers CD9, CD81 and CD63. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect the level of miR-424-5p in exosomes, and western blot was implemented to verify the WIF1/Wnt/β-catenin expression. The binding association between miR-424-5p and WIF1 was determined by the dual-luciferase reporter gene assay. Functional enhancement experiments were adopted to determine the role of exosome-carried miR-424-5p and WIF1/Wnt/β-catenin in osteogenic differentiation. ALP staining was adopted, and levels of RUNX2, OCN, and OPN were monitored using qRT-PCR to determine osteogenic differentiation. As a result, In vivo experiments showed that RUNX2, OCN and OPN levels decreased and the ALP activity was dampened after miR-424-5p overexpression in exosomes. Besides, exosomes overexpressing miR-424-5p attenuated osteogenic development via WIF1/Wnt/β-catenin. Our findings may bring evidence for miR-424-5p as a new biomarker for the treatment of osteoporosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []