Import of proteins into the trypanosome nucleus and their distribution at karyokinesis

2000 
In all eukaryotic organisms proteins are targeted to the nucleus via a receptor-mediated mechanism that requires a specific nuclear localization sequence (NLS) in the protein. Little is known about this process in trypanosomatid protozoa that are considered amongst the earliest divergent eukaryotes. We have used the green fluorescent protein (gfp) and beta-galactosidase reporters to identify the NLS of two trypanosomal proteins, namely the Trypanosoma brucei La protein homologue and histone H2B of T. cruzi. A monopartite NLS was demonstrated at the C terminus of the La protein, whereas a bipartite NLS was identified within the first 40 amino acids of histone H2B. Treatment of live trypanosomes with poisons of ATP synthesis resulted in exit of the La NLS-gfp fusion from the nucleus. Interestingly, this fusion protein accumulated at several discrete sites in the cytoplasm, rather than equilibrating between the nucleus and the cytoplasm. When ATP levels returned to normal, the protein reentered the nucleus, demonstrating that the process was energy dependent. Finally, using fusion proteins that localize to the nucleoplasm or the nucleolus, we identified a subpopulation of mitotic cells in which the chromosomes have segregated but the daughter nuclei remain connected by a thin thread-like structure. We propose that cells containing this structure represent a late stage in nuclear division that can be placed after chromosome segregation, but before completion of karyokinesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    83
    Citations
    NaN
    KQI
    []