M-BPR: A Novel Approach to Improving BPR for Recommendation with Multi-type Pair-wise Preferences

2021 
Abstract In this paper, we examine the two assumptions of the Bayesian personalized ranking (BPR), a well-known pair-wise method for one-class collaborative filtering (OCCF): (1) a user with the same degree of negative preferences for all her unrated items; and (2) a user always preferring her rated items to all her unrated items. We claim that (A1) and (A2) cause recommendation errors because they do not always hold in practice. To address these problems, we first define fine-grained multi-type pair-wise preferences (PPs), which are more sophisticated than the single-type PP used in BPR. Then, we propose a novel pair-wise approach called M-BPR, which exploits multi-type PPs together in learning users’ more detailed preferences. Furthermore, we refine M-BPR by employing the concept of item groups to reduce the uncertainty of a user’s a single item-level preference. Through extensive experiments using four real-life datasets, we demonstrate that our approach addresses the problems of the original BPR effectively and also outperforms seven state-of-the-art OCCF (i.e., four pair-wise and three point-wise) methods significantly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    4
    Citations
    NaN
    KQI
    []