An Eimeria acervulina OTU protease exhibits linkage-specific deubiquitinase activity

2019 
Ubiquitination is an important post-translational modification process that regulates many cellular processes. Proteins can be modified at single or multiple lysine residues by a single ubiquitin protein or by ubiquitin oligomers. It is important to note that the type of ubiquitin chains determines the functional outcome of the modification. Ubiquitin or ubiquitin chains can be removed by deubiquitinases (DUBs). In our previous study, the Eimeria tenella ovarian tumour (Et-OTU) DUB was shown to regulate the telomerase activity of E. tenella and affect E. tenella proliferation. The amino acid sequences of Et-OTU (GenBank: XP_013229759.1) and Eimeria acervulina (E. acervulina) ovarian tumour (Ea-OTUD3) DUB (XP_013250378.1) are 74% identical. Although Et-OTU may regulate E. tenella telomerase activity, whether Ea-OTUD3 affects E. acervulina growth and reproduction remains unclear. We show here that Ea-OTUD3 belongs to the OTU domain class of cysteine protease deubiquitinating enzymes. Ea-OTUD3 is highly linkage-specific, cleaving K48 (Lys48)-, K63-, and K6-linked diubiquitin but not K29-, K33-, and K11-linked diubiquitin. The precise linkage preference of Ea-OTUD3 among these three nonlinear diubiquitin chains is K6 > K48 > K63. Recombinant Ea-OTUD3, but not its catalytic-site mutant Ea-OTUD3 (C247A), exhibits activity against diubiquitin. Ea-OTUD3 removes ubiquitin from the K48-, but to a lesser extent from the K63-linked ubiquitinated E. acervulina proteins of the modified target protein, thereby exhibiting the characteristics of deubiquitinase. This study reveals that the Ea-OTUD3 is a novel functional deubiquitinating enzyme. Furthermore, the Ea-OTUD3 protein may regulate the stability of some K48-linked ubiquitinated E. acervulina proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    4
    Citations
    NaN
    KQI
    []