Hybrid nucleobases as new and efficient unnatural genetic letters.
2021
To expand the existing genetic letters beyond the natural four nucleotides, such as G, C, A, and T, it is necessary to design robust nucleotides that can not only produce stable and unperturbed DNA but also function naturally in living cells. Although hydrophobic bases, such as d5SICS (2,6-dimethyl-2H-isoquiniline-1-thione) and dNaM (2-methoxy-3-methylnaphthalene) were shown to be replicated in bacterial cells, the d5SICS:dNaM base-pair was found to perturb the structure of the duplex DNA. Therefore, it is necessary to design nucleobases that can form base pairs like the natural G:C and A:T pairs. Here, a reliable dispersion-corrected density functional theory has been used to design several nucleobases that can produce three-hydrogen-bonded base pairs like the G:C pair. In doing so, the Watson-Crick faces of d5SICS and dNaM were modified by replacing the hydrophobic groups with hydrogen bond donors and acceptors. As dNaM contains an unnatural C-glycosidic bond (C-dNaM), it was also modified to contain the natural N-glycosidic bond (N-dNaM). This technique produced 91 new bases (N-d5SICS-X (X = 1-33), C-dNaM-X (X = 1-35), and N-dNaM-X (X = 1-23), where X is the different types of modifications applied to d5SICS and dNaM) and 259 base-pairs. Among these base pairs, 76 base pairs are found to be more stable than the G:C pair. Interestingly, the N-d5SICS-32:C-dNaM-32 and N-d5SICS-32:N-dNaM-20 pairs are found to be the most stable with binding energies of about -28.0 kcal/mol. The base-pair patterns of these pairs are also analogous to that of the G:C pair. Hence, it is proposed that N-d5SICS-32, C-dNaM-32, and N-dNaM-20 would act as efficient new genetic letters to produce stable and unperturbed artificial DNA.Communicated by Ramaswamy H. Sarma.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
44
References
0
Citations
NaN
KQI