Ultrahigh performance polylactide achieved by the design of molecular structure

2021 
Abstract Poor melt strength and crystalline properties are the key barrier for polylactide (PLA) toward broader applications. Long chain branched PLA (LCB-PLA) with high foamability and heat resistance are prepared by employing dual-functional 4-vinylbenzyl glycidyl ether (VBGE) as branching coagent with cyclic peroxide. As a result, the branched chains with same length of original PLA chains are uniformly dispersed on PLA backbones via both the free-radical grafting reaction of the vinyl group in VBGE with one PLA backbone and end-group reaction of the epoxy group in VBGE with the carboxyl group of the other PLA chain. Not only the significantly enhanced foamability and heat resistance of LCB-PLA induced by the largely improved melt strength and crystallization performance but also the excellent processing flowability due to a relatively slight increase in the shear viscosity are found. Specifically, as compared to the pure PLA, the expansion ratio of LCB-PLA with 0.6 wt.% VBGE is increased by 17.4 times, and the Vicat softening temperature is enhanced by 95.5°C. Thus, this study paves a novel one-step continuous strategy to design LCB-PLA with ultrahigh foamability and heat resistance, which is valuable for the large-scale popularization of foamed PLA packaging products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    1
    Citations
    NaN
    KQI
    []