Elastic resource provisioning for scientific workflow scheduling in cloud under budget and deadline constraints

2016 
With the popularization and development of cloud computing, lots of scientific computing applications are conducted in cloud environments. However, current application scenario of scientific computing is also becoming increasingly dynamic and complicated, such as unpredictable submission times of jobs, different priorities of jobs, deadlines and budget constraints of executing jobs. Thus, how to perform scientific computing efficiently in cloud has become an urgent problem. To address this problem, we design an elastic resource provisioning and task scheduling mechanism to perform scientific workflow jobs in cloud. The goal of this mechanism is to complete as many high-priority workflow jobs as possible under budget and deadline constraints. This mechanism consists of four steps: job preprocessing, job admission control, elastic resource provisioning and task scheduling. We perform the evaluation with four kinds of real scientific workflow jobs under different budget constraints. We also consider the uncertainties of task runtime estimations, provisioning delays, and failures in evaluation. The results show that in most cases our mechanism achieves a better performance than other mechanisms. In addition, the uncertainties of task runtime estimations, VM provisioning delays, and task failures do not have major impact on the mechanism's performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    25
    Citations
    NaN
    KQI
    []