Exploring compact binary merger host galaxies and environments with $\rm{zELDA}$

2021 
Compact binaries such as double neutron stars or a neutron star paired with a black-hole, are strong sources of gravitational waves during coalescence and also the likely progenitors of various electromagnetic phenomena, notably short-duration gamma-ray bursts (SGRBs), and kilonovae. In this work, we generate populations of synthetic binaries and place them in galaxies from the large-scale hydrodynamical galaxy evolution simulation $\rm{EAGLE}$. With our $\rm{zELDA}$ code, binaries are seeded in proportion to star formation rate, and we follow their evolution to merger using both the $\rm{BPASS}$ and $\rm{COSMIC}$ binary stellar evolution codes. We track their dynamical evolution within their host galaxy potential, to estimate the galactocentric distance at the time of the merger. Finally, we apply observational selection criteria to allow comparison of this model population with the legacy sample of SGRBs. We find a reasonable agreement with the redshift distribution (peaking at $0.5 26$).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []