Electrochemical Detection of the Molecules of Life

2017 
All forms of life on Earth contain cellular machinery that can transform and regulate chemical energy through metabolic pathways. These processes are oxidation-reduction reactions that are performed by four key classes of molecules: flavins, nicotinamaides, porphyrins, and quinones. By detecting the electrochemical interaction of these redox-active molecules with an electrode, a method of differentiating them by their class could be established and incorporated into future life-detecting missions. This body of work investigates the electrochemistry of ubiquitous molecules found in life and how they may be detected. Molecules can oxidise or reduce the surface of an electrode - giving or receiving electrons - and these interactions are represented by changes in current with respect to an applied voltage. This relationship varies with: electrolyte type and concentration, working electrode material, the redox-active molecule itself, and scan rate. Flavin adenine dinucleotide (FAD), riboflavin, nicotinamide adenine dinucleotide (NADH), and anthraquinone are all molecules found intracellularly in almost all living organisms. An organism-synthesised extracellular redox-active molecule, Plumbagin, was also selected as part of this study. The goal of this work is to detect these molecules in seawater and assess its application in searching for life on Ocean Worlds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []