A Research on Engine Phase and Speed Estimation Method Based on Cylinder Pressure Sensor

2013 
Cylinder pressure based combustion state control is a direction that has drawn much attention in the field of internal combustion engine control, especially in the field of diesel HCCI (Homogeneous Charge Compression Ignition) research. In-cylinder pressure sensors have the potential to diagnose or even replace many traditional sensors, including camshaft and crankshaft sensors. This paper did research on engine synchronization method based on in-cylinder pressure signal. The research was based on a 4-cylinder high pressure common rail diesel engine equipped with 4 PSG (Pressure Sensor Glow Plug) type piezo-resistance cylinder pressure sensors, intended for HCCI research. Through theoretical analysis and experimental proof, methods and models for cylinder identification, engine phase estimation and engine speed estimation are given and further verified by experiments. Results show that cylinder pressure sensor could be used to identify cylinder instead of cam shaft sensor. The models for engine phase and speed estimation have been proved to have precision of 3° crank angle and 4.6rpm, respectively. The precision of engine phase and speed estimation provides a possibility for the engine to run if the crankshaft sensor fails, but more researches have to be carried out with respect to crankshaft sensor replacement.Copyright © 2013 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []