Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study

2018 
Haze has been severely affecting the densely populated areas in China during recent years. While many of the pilot studies have been devoted to investigate the contributions from local anthropogenic emission, limited attention has been paid to the influence from long-range transport. In this study, we use simulations from 6 participating models supplied through the Task Force on Hemispheric Transport of Air Pollution Phase 2 (HTAP2) exercise to investigate the long-range transport impact of Europe and Russia/Belarussia/Ukraine on the surface air quality in East Asia, with special focus on their contributions during the haze episodes over China. The impact of 20 % anthropogenic emission perturbation from the source region is extrapolated by a factor of 5 to estimate the full impact. We find that the full impacts from EUR and RBU are 0.99 µg/m 3 (3.1 %) and 1.32 µg/m 3 (4.1 %) respectively during haze episodes, while the annual averaged full impacts are only 0.35 µg m3 (1.7 %) and 0.53 µg/m 3 (2.6 %) respectively. By estimating the aerosol response within and above the planetary boundary layer (PBL), we find that long-range transport within the PBL contributes to 22–38 % of the total column density of aerosol response. Comparison with the HTAP Phase 1 (HTAP1) assessment reveals that from 2000 to 2010, the long-range transport from Europe to East Asia has decreased significantly by a factor of 2–10 for surface aerosol mass concentration due to the simultaneous emission reduction in source region and emission increase in the receptor region. By investigating the visibility response, we find that the long-range transport from the Europe and RBU region increases the number of haze events in China by 0.15 % and 0.11 % respectively, and the North China Plain and southeast China receives 1–3 extra haze days. This study is the first investigation into the contribution of long-range transport to haze in China with multiple model experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    6
    Citations
    NaN
    KQI
    []