Assessment of Sun photometer Langley calibration at thehigh-elevation sites Mauna Loa and Izaña

2018 
The aim of this paper is to analyze the suitability of the high-mountain stations Mauna Loa and Izana for Langley plot calibration of Sun photometers. Thus the aerosol optical depth (AOD) characteristics and seasonality, as well as the cloudiness, have been investigated in order to provide a robust estimation of the calibration accuracy, as well as the number of days that are suitable for Langley calibrations. The data used for the investigations belong to AERONET and GAW-PFR networks, which maintain reference Sun photometers at these stations with long measurement records: 22 years at Mauna Loa and 15 years at Izana. In terms of clear sky and stable aerosol conditions, Mauna Loa (3397 m a.s.l.) exhibits on average of 377 Langleys (243 morning and 134 afternoon) per year suitable for Langley plot calibration, whereas Izana (2373 m a.s.l.) shows 343 Langleys (187 morning and 155 afternoon) per year. The background AOD (500 nm wavelength) values, on days that are favorable for Langley calibrations, are in the range 0.01–0.02 throughout the year, with well-defined seasonality that exhibits a spring maximum at both stations plus a slight summer increase at Izana. The statistical analysis of the long-term determination of extraterrestrial signals yields to a calibration uncertainty of ~ 0.2–0.5 %, being this uncertainty smaller in the near infrared and larger in the ultraviolet wavelengths. This is due to atmospheric variability that cannot be reduced based only on quality criteria of individual Langely plots.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    16
    Citations
    NaN
    KQI
    []