Fractionated Irradiation of Right Thorax Induces Abscopal Damage on Bone Marrow Cells via TNF-α and SAA.

2021 
Radiation-induced abscopal effect (RIAE) outside of radiation field is becoming more attractive. However, the underlying mechanisms are still obscure. This work investigated the deleterious effect of thoracic irradiation (Th-IR) on distant bone marrow and associated signaling factors by irradiating the right thorax of mice with fractionated doses (8 Gy × 3). It was found that this localized Th-IR increased apoptosis of bone marrow cells and micronucleus formation of bone marrow polychromatic erythrocytes after irradiation. Tandem mass tagging (TMT) analysis and ELISA assay showed that the concentrations of TNF-α and serum amyloid A (SAA) in the mice were significantly increased after Th-IR. An immunohistochemistry assay revealed a robust increase in SAA expression in the liver rather than in the lungs after Th-IR. In vitro experiments demonstrated that TNF-α induced SAA expression in mouse hepatoma Hepa1-6 cells, and these two signaling factors induced DNA damage in bone marrow mesenchymal stem cells (BMSCs) by increasing reactive oxygen species (ROS). On the other hand, injection with TNF-α inhibitor before Th-IR reduced the secretion of SAA and attenuated the abscopal damage in bone marrow. ROS scavenger NAC could also mitigated Th-IR/SAA-induced bone marrow damage in mice. Our findings indicated that Th-IR triggered TNF-α release from lung, which further promoted SAA secretion from liver in a manner of cascade reaction. Consequently, these signaling factors resulted in induction of abscopal damage on bone marrow of mice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []