Real-time electromagnetic tracking–based treatment platform for high-dose-rate prostate brachytherapy: Clinical workflows and end-to-end validation

2017 
Abstract Purpose New technologies were integrated into a novel treatment platform combining electromagnetically (EM) tracked catheters, a 3D ultrasound (3DUS) imaging device, and a new treatment planning system to provide a real-time prostate high-dose-rate (HDR) brachytherapy treatment system. This work defines workflows for offline CT and online 3DUS planning scenarios and preclinical end-to-end validation of the platform. Methods and Materials The platform is composed of an EM-tracked stylet, a EM-tracked 3DUS probe, and an EM-tracked template guide, all used with the NDI Aurora field generator (NDI, Ontario, Canada). The treatment planning system performs continuous position and angular readings from all three EM sensors into a streamlined environment that allows for (1) contouring; (2) planning; (3) catheter insertion guidance and reconstruction; (4) QA of catheter path and tip position; and (5) exporting to an afterloader. Data were gathered on the times required for the various key steps of the 3DUS-based workflow. Results The complete 3DUS-based workflow on 16-catheter implant phantoms took approximately 15 min. This time is expected to increase for actual patients. Plan generation is fast (7.6 ± 2.5s) and the initial catheter reconstruction with updated dose distribution is obtained at no (time) cost as part of the insertion process. Subsequent catheter reconstruction takes on average 10.5 ± 3.1s per catheter, representing less than 3 min for a 16-catheter implant. Conclusions This preclinical study suggests that EM technology could help to significantly streamline real-time US-based high-dose-rate prostate brachytherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    20
    Citations
    NaN
    KQI
    []