A parallel second-order unstructured finite volume method for 3D free-surface flows using a σ coordinate

2019 
Abstract In this paper, we introduce a second-order time- and space-accurate technique, developed to solve in parallel free-surface flows in arbitrary three-dimensional geometries. The discretization is based on a second-order finite-volume technique on prisms elements, consisting of triangular grids on the horizontal and bounded by a free surface and an irregular bottom on the vertical. The equations are transformed vertically to the σ-coordinate system in order to obtain an accurate representation of top and bottom topography. The reconstruction of three presure/velocity decoupling methods using a Crank-Nicolson scheme formulation is proposed. The Momentum Interpolation Method (MIM) is combined with Local Extremum Diminishing (LED) second-order upstream scheme for convective terms is developed. The parallelization is designed by a block domain decomposition technique. The discretization results in non-symmetric variable-coefficient linear systems which are solved using a parallel multi-color Successive Over-Relaxation algorithm. Several test cases of surface wave motion are used to demonstrate the capabilities, numerical stability and performance of the model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    2
    Citations
    NaN
    KQI
    []