Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of COVID-19 patients.

2020 
The COVID-19 pandemic has been the primary global health issue since its outbreak in December 2019. Patients with metabolic syndrome suffer from severe complications and a higher mortality rate due to SARS-CoV-2 infection. We recently proposed that SARS-CoV-2 can hijack host mitochondrial function and manipulate metabolic pathways for their own advantage. The aim of the current study was to investigate functional mitochondrial changes in live peripheral blood mononuclear cells (PBMCs) from COVID-19 patients, decipher the pathways of substrate utilization in these cells and corresponding changes in the inflammatory pathways. We demonstrate mitochondrial dysfunction, metabolic alterations with an increase in glycolysis and high levels of mitokine in PBMCs from COVID-19 patients. Interestingly, we found that levels of FGF-21 mitokine correlate with COVID-19 disease severity and mortality. These data suggest that COVID-19 patients have compromised mitochondrial function and an energy deficit which is compensated by a metabolic switch to glycolysis. This metabolic manipulation by SARS-CoV-2 triggers an enhanced inflammatory response which contributes to severity of symptoms in COVID-19. Targeting mitochondrial metabolic pathway(s) can help define novel strategies for COVID-19.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    34
    Citations
    NaN
    KQI
    []