Effects of Radiation on Drug Metabolism: A Review

2019 
BACKGROUND: Radiation is the fourth most prevalent type of pollution following the water, air and noise pollution. It can adversely affect normal bodily functions. Radiation alters the protein and mRNA expression of drugmetabolizing enzymes and drug transporters and the pharmacokinetic characteristics of drugs, thereby affecting drug absorption, distribution, metabolism, and excretion. Therefore, it is important to study the pharmacokinetic changes in drugs under radiation. METHODS: To update data on the effects of ionizing radiation and non-ionizing radiation caused by environmental pollution or clinical treatments on the protein and mRNA expression of drug-metabolizing enzymes and drug transporters. Data and information on pharmacokinetic changes in drugs under radiation were analyzed and summarized. RESULTS: The effect of radiation on cytochrome P450 is still a subject of debate. The widespread belief is that higherdose radiation increased the expression of CYP1A1 and CYP1B1 of rat, zebrafish or human, CYP1A2, CYP2B1, and CYP3A1 of rat, and CYP2E1 of mouse or rat, and decreased that of rat's CYP2C11 and CYP2D1. Radiation increased the expression of multidrug resistance protein, multidrug resistance-associated protein, and breast cancer resistance protein. The metabolism of some drugs, as well as the clearance, increased during concurrent chemoradiation therapy, whereas the half-life, mean residence time, and area under the curve decreased. Changes in the expression of cytochrome P450 and drug transporters were consistent with the changes in the pharmacokinetics of some drugs under radiation. CONCLUSION: The findings of this review indicated that radiation caused by environmental pollution or clinical treatments can alter the pharmacokinetic characteristics of drugs. Thus, the pharmacokinetics of drugs should be rechecked and the optimal dose should be re-evaluated after radiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    1
    Citations
    NaN
    KQI
    []