Voltammetric immunoassay of human IgG based on the release of cadmium(II) from CdS nanocrystals deposited on mesoporous silica nanospheres

2019 
The authors describe a nanocomposite that was obtained by in-situ deposition of CdS nanocrystals on mesoporous silica nanospheres (MSNs), and its use in an electrochemical immunoassay of human immunoglobulin G (HIgG). The MCN/CdS nanocomposite was covalently modified with the antibodies against HIgG and then employed in a voltammetric immunoassay at antibody-functionalized magnetic beads. Through sandwich immunoreaction, the MCN/CdS nanoprobes are quantitatively captured onto the magnetic beads where numerous Cd(II) ions are released in an acidic solution. The Cd(II) can be detected by anodic stripping voltammetry at a typical working potential of −0.78 V (vs. Ag/AgCl). In combination with the high loading of CdS on MSNs, the use of the stripping voltammetric analysis renders the method high sensitivity. A wide linear range varying from 0.01 to 100 ng mL−1 is obtained for HIgG detection with a lower detection limit at 2.9 pg mL−1. In addition, the preparation of the nanoprobe is inexpensive. The magnetic bead-based assay does not require complex manipulations. Therefore, this method is deemed to possess a wide scope in that it may be applied to other immunoassays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    6
    Citations
    NaN
    KQI
    []