Genomic and biological characteristics of Avian Orthoavulavirus-1 strains isolated from multiple wild birds and backyard chickens in Pakistan

2021 
Circulation of the dominant sub-genotype VII.2 of Avian Orthoavulavirus-1 (AOAV-1) is affecting multiple poultry and non-poultry avian species and causing significant economic losses to the poultry industry worldwide. In countries where ND is endemic, continuous monitoring and characterization of field strains are necessary. In this study, genetic characteristics of eleven AOAV-1 strains were analyzed isolated from wild birds including parakeets (n = 3), lovebird parrot (n = 1), pheasant (n = 1), peacock (n = 1), and backyard chickens (n = 5) during 2015-2016. Genetic characterization (genome size [15,192 nucleotides], the presence of typical cleavage site [112-RRQKRF-117]) and biological assessment (HA log 27 to 29 and intracerebral pathogenicity index [ICPI] value ranging from 1.50 to 1.86) showed virulent AOAV-1. Phylogenetic analysis showed that the studied isolates belonged to sub-genotype VII.2 and genetically very closely related (> 98.9%) to viruses repeatedly isolated (2011-2018) from commercial poultry. These findings provide evidence for the existence of epidemiological links between poultry and wild bird species in the region where the disease is prevalent. The deduced amino acid analysis revealed several substitutions in critical domains of fusion and hemagglutinin-neuraminidase genes. The pathogenesis and transmission potential of wild bird-origin AOAV-1 strain (AW-Pht/2015) was evaluated in 21-day-old chickens that showed the strain was highly virulent causing clinical signs and killed all chickens. High viral loads were detected in different organs of the infected chickens correlating with the severity of lesions developed. The continuous monitoring of AOAV-1 isolates in different species of birds will improve our knowledge of the evolution of these viruses, thereby preventing possible panzootic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []