Neutrophil Elastase Degrades Cystic Fibrosis Transmembrane Conductance Regulator via Calpains and Disables Channel Function In Vitro and In Vivo

2013 
Rationale: Cystic fibrosis transmembrane conductance regulator (CFTR) protein is a chloride channel regulating fluid homeostasis at epithelial surfaces. Its loss of function induces hypohydration, mucus accumulation, and bacterial infections in CF and potentially other lung chronic diseases.Objectives: To test whether neutrophil elastase (NE) and neutrophil-mediated inflammation negatively impact CFTR structure and function, in vitro and in vivo.Methods: Using an adenovirus-CFTR overexpression approach, we showed that NE degrades wild-type (WT)- and ΔF508-CFTR in vitro and WT-CFTR in mice through a new pathway involving the activation of intracellular calpains.Measurements and Main Results: CFTR degradation triggered a loss of function, as measured in vitro by channel patch-clamp and in vivo by nasal potential recording in mice. Importantly, this mechanism was also shown to be operative in a Pseudomonas aeruginosa lung infection murine model, and was NE-dependent, because CFTR integrity was significantly ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    74
    Citations
    NaN
    KQI
    []